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SUMMARY

This report describes the investigation of a new method for recovering
diffraction-limited images through the turbulent atmosphere. The method con-
sists of an iterative algorithm that constructs an image from Fourier modulus
data which is measured by stellar speckle inperferometry. The results of
this research indicate that the method has the potential for providing dif-
fraction-limited images of earth-orbiting satellites.

Image construction experiments were performed on Fourier modulus data
computer-simulated to include the effects of atmospheric turbulence, dif-
fraction, photon (Poisson statistics) noise, and a finite number of short-
exposure images. The quality of the constructed images was found to degrade
in a gradual and predictable manner as the signal-to-noise ratio decreases.
The rms error of the constructed images was found to vary approximately as
the square root of the rms error of the Fourier modulus data. Diffraction-
1imited images were constructed for levels of photon noise that would be ex-
pected for imaging satellites through a 1.6-meter telescope.

Image construction experiments were peformed on the Fourier modulus of a
number of different objects of varying complexity. Interpretation of the
results was complicated by a tendency of the algorithm to stagnate at local
minimum having the appearance of a good quality image superimposed by a pat-
tern of stripes. Nevertheless, the results were suggestive that the solution
is usually unique; only for an object satisfying special conditions is the
Fourier modulus ambiguous. As the signal-to-noise ratio decreases, the am-
biguity of the solution increases, but that ambiguity takes the form of noise
in the constructed image rather than a complete change in the basic shape of
the image.

Several variations of the algorithm were compared, and one was found to
converge considerably faster than the others. The convergence time was
longer for objects of greater complexity. For an array size of 128 x 128
pixels, typically ore hundred iterations are required, taking about two
minutes on an array processor.
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FOURIER MODULUS IMAGE CONSTRUCTION

1
INTRODUCTION

The purpose of this research project is to investigate the effectiveness
of a new method of recovering fine resolution imagery through the turbulent
atmosphere.

Ordinarily, atmospheric turbulence limits the resolution of an image ob-
tained through a large optical telescope to about one second of arc at best,
which corresponds to the diffraction limit of an optical telescope of aper-
ture 10 an. By comparison, the theoretical diffraction-limited resolution
of a 2-meter telescope with no atmospheric turbulence is 0.05 arc-seconds --
20 times finer. Compensated imaging (real-time correction of atmospheric
turbulence-induced phase errors by adaptive optics) can produce diffraction-
limited images, but the system is expensive. An inexpensive alternative ap-
proach is to gather fine resolution information by stellar speckle inter-
ferometry [1], and then process that information to form an image. The in-
formation obtained from speckle interferometry is the modulus of the object's
Fourier transform, or equivalently the autocorrelation of the object. An
image can be constructed from this information using an iterative algorithm
[2]. The imagery thus obtained would have diffraction-limited resolution.

This research project had three major goals: (1) to determine how the
quality of the constructed images varied with the signal-to-noise ratio of
the Fourier modulus data; (2) to determine whether the algorithm could pro-
duce spurious results (that is, whether the constructed image is unique);
and (3) to investigate changes in the algorithm to improve convergence of
the algorithm and to determine how the convergence time varies with the pro-
perties of the Fourier modulus data. Section 2 of this report gives back-
ground to the iterative algorithm. Sections 3 through 5, respectively, de-
scribe the results relating to the three goals listed above. Section 6 sum-
marizes the conclusions and outlines areas where further work is needed.
Appendix A contains a proof of convergence for one version of the iterative

algorithm.




2
ITERATIVE METHOD BACKGROUND

This section briefly describes the iterative method, which is discussed
in more detail elsewhere [2, 3] and in Section 5. Since the experiments were
performed on a digital computer, the object and its Fourier transform are
sampled functions. Throughout this report, the convention is used that
functions represented by upper case letters are the Fourier transforms of
functions represented by lower case letters,

Let the object distribution be fmn and its discrete Fourier transform
be

qu = ,qul exp(iopq) =g[fmn] - Z fon €XPL=J(20/N)(mp + nq)]) (1)
mn

where my, n, p, and g = 0, 1, 2, . . ., N = 1. m and n are referred to as
spatial coordinates and p and g as spatial frequency coordinates. The object
brightness distribution fmn is real and nonnegative and qu is Hermi-
tian. We assume that only Iqul is measured, although in some cases of
practical dinterest opq may be measurable for very low spatial frequen-
cies. The diameter of the object can be computed since it is half the diam-
eter of the autocorrelation f % f ..7“[|qu{2]. The problem is to
reconstruct the object fmn’ or equivalently the phase opq, from | qu

consistent with the fact that fmn 2 0. Use of the constraint of the ob-
Ject's computed diameter is not essential, since any nonnegative solution

having a Fourier modulus Iqu Iautomatica]]y has the correct diameter.

A block diagram of the iterative method is depicted in Figure la. The
four steps of each iteration are as follows. (1) An input image Inn
(which in some instances may be considered an estimate of the object) is
Fourier transformed:

Gog = |Gpg| ex0(185q) ~FFlon,)

10
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Figure 1. (A) Block diagram of the iterative method;
(B) the input-output concept for the iterative method.
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(2) The result is made to satisfy the measured Fourier modulus and the com-
puted phase is left unchanged:

8pq = | Fpq| €xP(i%5g)
(3) The result is inverse Fourier transform:
=1
I ~F ' (61

(4) Based on how g'mn violates the object-domain constraints, a new input

9mn is formed, and the process is repeated.

Taken together as a group, the first three steps can be viewed as a non-
1inear system having an input 9n and an output g'mn as depicted in
Figure 1b. The output g'mn is guaranteed to have a Fourier transform with
the measured modulus. Therefore, if g'mn is nonnegative, then it is a so-
lution to the problem; that is, it simultaneously agrees with the measured
data in the Fourier domain and the a priori nonnegativity constraint in the
image (or object) domain. The procedure is to iteratively change the input
in such a way as to drive the output to be everywhere nonnegative. Driving
the output to be zero outside the computed diameter may also be included;
imposition of the diameter constraint is not essential, but it decreases the
convergence time of the algorithm,

The iterative method embraces a family of algorithms for altering the
input in order to drive the output to satisfy the object-domain constraints.
Two such methods of altering the input that were used for the experiments
reported here are given by

9 e (M) ¢ ¥

%+1,mn = (2)
0 ’ (m,n) € v
and

glz’mn ’ (m9n)¢ Y

I+1,mn = (3)

12




where % mn and g'k mn 2re the input and output, respectively, at the
kth itergtion, y is ’the set of points at which g'k mn violates the con-
straints, and 8 is a constant, We refer to the 1tera%ive method using Egq.
(2) as the error-reduction approach, since it can be shown that the mean-
squared error defined in the Fourier domain by

2 ([%0a] = [Foa] *)

EE - B 5 (4)
F
5 Pq
or in the image domain by
] 2
9
2 mney l mn I
I S T (5)
% oo

can only decrease at each iteration. The proof of convergence is given in
Appendix A, These two error measures indicate the degree to which the solu-
tion agrees with the measured Fourier modulus. Unfortunately, the fractional
decrease of the error becomes very small as the iterations progress, and the
error-reduction approach usually does not converge to a solution in a prac-
tical sense.

An important notion that is used in Eq. (3) and other related methods of
altering the input is that a change of the input tends to result in a similar
(but somewhat different) change of the output [47. We refer to these methods
of altering the input as the input-output approach. Although the mean-
squared error does not necessarily decrease at each iteration (it may even
increase), in practice the input-output approach converges much faster than
the error-reduction approach. The optimum choice of the constant g8 in Eq.
(3) depends on the statistics of qu and qu. We have found values of 8
between 0.5 and 1.0 to work well. The input-output approach can be used by
itself, or it can be alternated with the error-reduction approach. For the
results shown in Sections 3 and 4, we alternated between Eq. (2) and Eq. (3),
typically performing thirty to sixty iterations using Eq. (3) followed by

ten iterations using Eq. (2).




The region y in Egs. (2) and (3) includes all points at which ' m
violates the object-domain constraints. The primary constraint is that the
image be ‘nonnegative. Another constraint that may be imposed is that the
diameter of the image not exceed half the diameter of the autocorrelation.
For the set of experiments described in Sections 3 and 4, we applied a tight
diameter constraint for the first few iterations, but only constrained the
image to half the field-of-view (and the images always fit within less than
half the field-of-view) in each dimension for the bulk of the iterations.

As mentioned earlier, the diameter constraint is not essential, since
all real, nonnegative solutions automatically have the correct diameter (half
the diameter of the autocorrelation), However, during the iterations the
§ intermediate results (the output images g') do have a diameter exceeding the
known diameter, and by applying the diameter constraint the convergence time
of the algorithm is decreased. That g' can have a diameter greater than half
the diameter of the autocorrelation can be seen from the following example.
2 Suppose that for a given iteration the input g is nonnegative and has the
‘ correct diameter, but has an incorrect Fourier modulus. After Fourier trans-
formation, its Fourier transform G is modified to satisfy the measured
Fourier modulus, |F|, which we will assume is exactly the Fourier modulus of
the object. Neglecting the case where |G| = O (it is almost never exactly
equal to zero, due to noise, etc), this can be accomplished by multiplying G

[P St Wby

by |F|/|G|,
- |Foq
Gpq = Gpa( G >
|%pa]
By the convolution theorem the resulting output image can be expressed as h

J =1 IFESI J

9mn = gmn* g’ ‘qu‘

In general the Fourier transform of (|F|/|6]) will have positive and negative
sidelobes that extend over the entire field-of-view. Therefore g¢' will
contain areas of positive and negative values that extend beyond half the
diameter of the autocorrelation. Nevertheless g' and the object must have




identical autocorrelations: since |G'| = |F|, ¢'9 ¢ -g'][|G'|2] =
g’l[IFIZJ = f % f. The diameter of g' can exceed half the diameter of
the autocorrelation only if g' has regions of negative value, since negative
values are required to get the cancellation needed to reduce the diameter of

the autocorrelation to less than twice the diameter of g'.




3
NOISE PROPERTIES OF IMAGES CONSTRUCTED FROM FOURIER MODULUS

This section describes a set of experiments aimed at determining how the
quality of the constructed images depends on the amount of noise present in
the - -ured Fourier modulus data. Noisy Fourier modulus data was simulated
having predetermined amounts of noise, images were constructed from the noisy
Fourier modulus data, and a measure was made of the quality of the con- '
] structed images.

3.1 SIMULATION OF NOISY FOURIER MODULUS DATA

The Fourier modulus data used for the reconstruction experiments was
f simulated to include the effects of atmospheric turbulence and photon noise.
The object used (a digitized photograph of a P72-2 sensor testbed) is shown
in Figure 2, as it would appear through a diffraction-limited telescope with
no atmospheric turbulence and no noise. The object is about 64 x 40 pixels
in extent, imbedded in a 128 x 128 array. The object fmn was convolved
with 156 different point-spread functions (PSFs) to produce 156 different
blurred images

k k =] k
drsm) - fmn % Sém) -F [qu Séq)]. k=1, ..., 156 (6)
h

where séﬁ) is the kt PSF, The object and the PSFs were supplied by
B, L. McGlamery (Visibility Laboratory, Scripps Institution of Oceanography,
U.C. San Diego) and were computed from phase functions representing the ef-
fects of a model of atmospheric turbulence having a Kolmogorov spectrum (5],
assuming a telescope lens diameter of 1.6 meters and o
[6]) = 0.1 meters. Examples of the blurred images déﬁ)are shown in
Figure 3(a)-(d). The blurred images were then converted to mean photon
counts and subjected to a Poisson noise process: each pixel was replaced
with a sample drawn from a Poisson distribution with mean and var}zgce equal

to the mean photon count, resulting in the noisy degraded images imn .

(Fried's parameter

O PP o

A point of reference for the amount of photon noise present in the data
is given by an analysis done by B. L. McGlamery [7]. He assumed that the

16
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Figure 2. The reference otject.

Figure 3. Degraded images. (A)-(D) Noise-free blurred images; degraded
(blurred and noisy) images--number of photons per degraded images:
(E)-(H) 305,000, (I)-(L) 6143; (M)-(P) 643.

17




short-exposure blurred images were obtained with a system having the follow-
ing parameters:

1.6 m
5 msec = exposure time
100 nm = spectral bandwidth
550 nm center wavelength
0.8 = atmospheric transmittance

telescope diameter

and assuming 4 5900°K spectral curve for the solar irradiance, and an $20
sensor spectral sensitivity curve. For the P72-2 object (Figure 2) at a mag-
nification equivalent to a distance of 300 km, the blurred images (reflec-
tance maps) were multiplied by a constant of value 2779 to convert the image
to a mean value of photoelectrons/pixels (mean photon counts). We refer to
this constant for converting reflectance into mean photoelectrons as the
photoelectron scale factor. The value of 2779 pertains to the system and
exposure time described above, which was considered to be realistic for ob-
serving satellites (although the spectral bandwidth of 100 nm may be con-
sidered to be too high by as much as a factor of two). Using 156 blurred
jmages, this case serves as a baseline. For other cases there would be
greater or fewer photons available according to the reflectivity of the ob-
Jject and the values of the parameters listed above. The net effect on the
photon noise of all of these factors was simulated by lumping them all into
one number, the photoelectron scale factor. For our experiments the photo-
electron scale factor was varied between 6 and 55580 which is equivalent to
between 0.002 times and 20 times the number of photons for the baseline case.
The values of the photoelectron scale factor that were used are 55580, 27790,
13895, 5558, 2779, 1390, 556, 278, 139, 56, 28, 14, and 6.

Examples of the noisy, degraded images, including both the blurring due
to the atmosphere (and the telescope aperture) and photon noise, are shown
in Figure 3.

This simulated speckle data was then processed by the Labeyrie method
[1], as modified by Goodman and Belsher [8] and later by others [9], to ar-
rive at an estimate of the modulus of the Fourier transform of the object:

18




156 2 1/2

(k)
I k{:,llpql - N
pa' = "pg 156

2
=[50

where

N =2 X i) 3k (8)
k mn Kk
is a constant equal to the total number of photons detected [8, 9],
P (k) is the square of the MIF of the speckle interferometry pro-
cess and wpq is a weighting factor. Examples of Iépq\ are shown in
Figure 4, The subtraction of NC eliminates one particular constant noise
term due to photon statistics. Other noise terms remain. If the sensor is
operating in a photon-counting mode, then NC can be calculated from Eg.
(8) as it was for our experiments; otherwise, NC can be estimated as the
minimum value of 2:|I(k)| at high spatial frequencies, In a real-
world situation, it may a]so be necessary to compensate for the MTF due to
the detection process before subtracting NC [10]. In the real world an
estimate of the MTF in the denominator of Eq. (7) can be obtained from mea-
surements on an unresolved star or determined from a model of the atmosphere.
For this experiment the intent was to separate out the effects due to photon
noise alone, so the exact MTF was used. Division by the MTF aiso compensates
for the MTF due to the telescope aperture, resulting in a net system transfer
function that is unity within a circle of radius equal to twice the radius
of the telescope aperture, and is set to zero outside that aperture. The
result would be a system impulse response having undesirable negative side-
lobes. The weighting function wpq was included in Eq. (7) in order to re-
store the natural MTF associated with a telescope having a circular aperture
(that MTF being the autocorrelation of the circular aperture), and the re-
sulting system impulse response no longer has negative sidelobes. The unde-
graded image shown in Figure 2, which we refer to as the reference object,
was also subjected to the same weighting function in the Fourier domain to
impose on it the transfer function of the telescope aperture. The radius of

19




Figure 4. Fourier modulus estimates computed from 156 degraded images each.
Number nf photons per degraded image: (A) infinity {noise-free); (B) 305,000;
(C) 6143; (D) 643.




was 62 pixels, corresponding to the MTF of a telescope of diameter 1.6

NPQ
meters.

An indication of the signal-to-noise ratio of the Fourier modulus esti-
mate lébq| can be obtained from the total number of photons detected,
Nc' Values of Nc for the Fourier modulus estimates were varied from 9.5
X 108 for the lowest noise case (photoelectron scale factor = 55580) to
1.0 x 10°
Since 156 degraded images were used to compute the Fourier modulus esti-

6 to 643 photons per de-

for the highest noise case (photoelectron scale factor = 5).

mates, this corresponds to a range of 6.1 x 10
graded image. Since each blurred image extended over an area of about 64 by
64 pixels, this corresponds to a range of 1490 to 0.16 photons per pixel per
degraded image over the area of the degraded image. For the baseline case
having a photoelectron scale factor of 2779, the value of Nc was 4.7 x
107, which is equivalent to 3 x 105 photons per degraded image, or 74
photons per pixel per degraded image over the area of the degraded image.
Although it would not be measurable from telescope data, for our computer
simulations we also computed the actual mean-squared error of the Fourier
modulus estimate:

A P
LRl )
£2A - (9)
L YT,

pq' Pd

where qu is assumed to include the weighting factor Npq. A plot of
E!?|, the rms error of the Fourier modulus estimate, versus the number of
photons per degraded image is shown in the upper curve of Figure 5.

Since the signal-to-noise ratio of the Fourier modulus estimate tends to
decrease with increasing spatial frequencies, one would hope to reconstruct
low-frequency (low resolution) features of an object even under very noisy
conditions for which the high-frequency information is lost. For this rea-
son, reconstruction experiments were also performed on low resolution ver-
sions of the Fourier modulus estimates. Formation of low resolution versions
of Iél were accomplished by replacing the radius-62 wpq in Eq. (7) by a
W of the same form, but of radius 16 pixels (i.e., approximately four

pq
times coarser resolution than the baseline "high resolution" version). The
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Figure 5. Rms error of Fourier modulus estimate, El’:’ » versus number of

photons per degraded image, Nc/156. Upper curve: h

gh resolution version;

lower curve: low resolution version.




lower curve in Figure 5 shows E'? versus th?\ number of photons per de-
graded image for the low resolution version of |F|. The fact that the curve
for the low-resolution case is below that of the high-resolution case (that

is, the error of the Fourier modulus estimate is lower) confirms the notion
that the error increases with increasing spatial frequencies.

3.2 IMAGE CONSTRUCTION RESULTS FROM NOISY FOURIER MODULUS

i Image construction by the iterative method (as described in Section ?2)
was carrijed out on 13 high-resolution and 8 low-resolution Fourier modulus
estimates which were generated in the manner described in Section 3.1. 1In
each case, although useful images were usually available after about 100
iterations, 600 iterations (the same sequence of iterations for all cases)
were carried out in order to ensure that the convergence of the algorithm
was as complete as was practical.

The rms error Eo’ which is a measure of how well the constructed image
agrees with the object-domain constraints and Fourier modulus estimate, was
reduced to about 0.007 for the lowest-noise case, to 0.05 for the median-
noise case, and to 0.4 for the highest-noise case. In no case was E0

driven to zero; that is, in no case did the algorithm converge to a solution

that was in perfect agreement both with the Fourier modulus estimate and with
the object’s nonnegativity constraint. Such agreement would be impossible
because the noise present in the Fourier modulus estimate makes that estimate
i inconsistent with the object's nonnegativity constraint. In particular, if
the corresponding estimate of the object's autocorrelation is computed by
Fourier transforming | 912, that autocorrelation estimate is found to have
regions of negative values. It can easily be shown that an autocorrelation

with neqative values can arise only from an object with negative values.
That is, there can be no nonnegative (physical) object that could give rise
to the Fourier modulus estimate l?l. (In addition, even if the estimate of
the object's autocorrelation were nonnegative, then it is still possible that

there would be no nonnegative object giving rise to it. Although we do not
know in general how to tell if a given function is an autocorrelation func-
tion, it can be shown that not all nonnegative symmetric functions are auto-
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correlation functions, and a sum of autocorrelation functions is not neces-
sarily an autocorrelation function.) Nevertheless, this iterative image
construction method, which relies on the nonnegativity of the solution and

strives toward a nonnegative solution, finds a solution that has a minimum
amount of negative values; in doing so, it constructs an image that is (at
least for cases where only a moderate amount of noise is present) a good ap-
proximation to the original object.

The image construction results are shown in Figure 6 and 7 for the high-
resolution and low-resolution cases, respectively. Images that came out in-
verted (rotated in the plane of the page by 180°) were re-inverted in order
to take on the same orientation as the reference object. Inverted solutions
are always possible since the Fourier modulus of f(-x) equals the Fourier
modulus of f(x), for f(x) real valued. Figure 6(E) shows the result for the
baseline case. In the high-resolution case, a good quality image, Figure
6(H), was constructed for a photon count (signal-to-noise ratio) ten times
worse than the baseline case. A degraded but still recognizable image, Fig-
ure 6(K), was constructed for a photon count one hundred times worse than
the baseline case. At four hundred times worse photon count than the base-
line case, Figure 6(H), it appears that no useful image information remains.

Also shown for comparison in Figures 6(N)-6(U) are short-exposure images
with no atmosphere present (diffraction-limited and photon-limited) for the
eight lowest signal-to-noise ratio cases, corresponding to Figures 6(F)-6(M),
respectively. From this it is seen that a single short-exposure image with
no atmosphere present'is better than an image constructed from the Fourier
modulus estimate based on 156 short-exposure images. One might also wish to
compare the image construction results with the sum of 156 photon-limited
images with no atmosphere present. For the lowest signal-to-noise ratio case
having photoelectron scale factor of 6, the sum of 156 images would be the
same as a single image of photelectron scale factor of 936 = 6 x 156, which
corresponds to a result half way between Figures 6(N) and 6(0).

The low resolution results shown in Figure 7 are for the eight lowest
signal-to-noise ratio cases only. Comparing Figure 7 with Figure 6(F)-6(M),
for the same number of photon counts, N_, the constructed images appear to

c
be less noisy in the low-resolution case than in the high-resolution case.
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Figure 6. (A) Reference object; (B)-(M) images constructed from Fourier

modulus estimates, corresponding to the data points in Figure 5 for the

high resolution case, excluding the lowest noise case. The baseline case

is (E). Each third image corresponds to a factor of 10 in number of
photons detected.
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Figure 6. (N)-(U) Photon-1imited short-exposure
atmosphere present (see text).
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Figure 7. (A) Low resolution version of reference object; (B)-(I) images
constructed fr‘gm low resolution versions of the Fourier modulus estimates,
corresponding to the data points in the lower curve of Figure 5.

e
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It should be noted, however, that in the high-resolution case, the noise in
the constructed image is mostly in the higher-frequency details, and the
lower-frequency components (the coarser details) of the constructed images
remain mo}e faithful than the higher-frequency details. Based on just their
low frequency content (coarse details), the high-resolution and low-
resolution cases appear to be comparable.

Although it would not be measurable from telescope data, for our digital
simulations we computed the actual mean-squared error of the constructed im-
age, since we have available the reference object. Before this mean-squared
error can be computed, the constructed image must be brought into coincidence
with the reference object, since the constructed image may be translated and
even spatially inverted relative to the reference object [2]. The choice of
whether to invert the image and what translation is required was determined
by successively computing the cross-correlations of the reference object with
the constructed image at normal and inverted orientations, and searching for
the maximum over the two cross-correlations. Inversion of the image (when
necessary) was effected by conjugating its Fourier transform, and translation
of the image was accomplished by muitiplying its Fourier transform by a lin-
ear phase factor. The resulting constructed complex Fourier transform §bq
was used to compute the mean-squared error

~ 2
2 |6yq - Fpql
& °pa ~ Tng

({3
T/ Foql
pq Pq

F=

(10)

which is equivalent to the mean-squared error defined in the image domain as

E2 %% (ahn - fmn)2

A (1)

0 E f2 F
mn mn

where Ehn is the translated and possibly inverted version of the con-
structed image. In Eqs. (10) and (11) the reference object fmn and its
Fourier transform are assumed to have been subjected to the same weighting

function wpq as the Fourier modulus estimate.
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The rms error of the constructed images, ¥, is shown as a function of
Elel, the rT? error of the Fourier moduius estimate, in Figure 8, which
shows that E appears to vary approximately as the square root of E|?|.
This approximate square root relationship was not expected — no theoretical
results are known that predict this relationship., For a given E,ﬂ . £ is
approximately the same for the low resolution cases (triangles) as for the
high resolution cases (circles). Therefore, except for possible savings in
computation time there does not seem to be any advantage to low-pass filter-
ing the data before applying the iterative algorithm. A more sophisticated

filter such as Wiener filter could, on the other hand, prove advantageous.

For the low noise cases E did not go below 0.1 although the square root
of E|?| was well below that level. The cause of this error in the low
noise cases seems to have resulted not from the noise but from the stagnation
of the algorithm at an image that perhaps is at a local minimum of error,
but not at a global minimum. These images look 1like the reference object
with a low contrast sinusoidal pattern superimposed (or as stripes across
the image). Figures 9(a)-9(d) show four different images constructed from
the same Fourier modulus estimate (Nc = 9.5 x 108), each arrived at hy
the same sequence of iterations but with different arrays of random numbers
as the initial input to the first iteration. The stripes appear in each im-
age, but with different orientations and spatial frequencies. This pheno-
menon was noticed earlier [2], but a complete explanation of it has not been
available. Further discussion of this phenomenon is given in Section 5.
Also shown in Figure 9 are four different images constructed from the same
Fourier modulus for a higher noise case (NC = 9.5 x 106). In this case
the stripes do not occur; but a noticeable amount of random noise occurs in
the background of the images, and the details of that noise are different

for each constructed image.

The image construction results shown in Figure 6 were arrived at from
initial inputs consisting of random numbers. In addition, images were also
constructed using the reference object as the initial input. Although such
an initial input is unrealistic from the point of view that in the real world
the reference object would not be known, those image construction results
were interesting because they shed some light on the problem of the stripes.
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RMS FOURIER MODULUS ERROR

Figure 8. Rms error of constructed images, E. versus rms error of the

Fourier modulus estimates.Em. Circles indicate high resolution versions

and triangles indicate low resolution versions. Squares indicate results
when the reference object was used as the initial input to the algorithm

(see text). The solid 1ine shows El;,l for comparison.
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Figure 9. Four images constructed using different starting inputs.

(A)-(D) Low noise case (6.1 x 106 photons pez degraded image) showing

stripes; (E)-(H) higher noise case (6.1 x 10%* per photons per degraded

image). These pictures were intentionally overexposed in order to em-
phasize the stripes and the background noise.
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When starting with the reference object as the initial input, we have some-
thing that is not in perfect agreement with the noisy Fourier modulus esti-
mate. As the iterations progress, the output image departs from the refer-
ence object while becoming in better agreement with the Fourier modulus esti-
mate. Finally, the iterations stagnate at a point where the result is in as
good agreement as possible with the simultaneous constraints of object non-
negativity and Fourier modulus equalling the Fourier modulus estimate.

For the medium to high noise cases, the constructed images resulting from
the reference object as the initial input were comparable to the constructed
images resulting from random numbers as the initial input; in addition, the
error measures Eo and £ were comparable for the two cases., For the low

% noise cases, the constructed images resulting from the reference object as
the initial input were comparable in appearance to the constructed images
q resulting from random numbers as the initial input except that no stripes

were present. In addition, both the error measures Eo and £ were consiqsr-
ably less than the values for the case of the random initial input. E for
this case is plotted in Figure 8 along with the case of the random initial
input, where it is seen that F approaches zero as E|?| approaches zero, as
one would expect. For the four lowest noise cases, the error Eo for the
case of the random initial input versus the case of the reference object as
initial input was 0.00737 vs 0.00333, 0.00748 vs 0.00391, 0.00794 vs 0.00526,
and 0.0114 vs 0.00933. For higher amounts of noise Eo was comparable in
the two cases. Therefore, for the low noise cases one can distinguish the
local minimum having stripes from the alobal minimum not having stripes by
the value of the rms error Eo‘ It is this fact that a smaller error Eo
occurred for the constructed image not having stripes that leads us to be-
lieve that the stripes represent a problem of encountering a local minimum
and do not represent a fundamental uniqueness problem,

The most important result from this set of experiments on the noise pro-
perties is that as the noise increases, the quality of the constructed images
degrades in a gradual and predictable manner. Furthermore, the quality of
the constructed images is very good for the realistic signal-to-noise ratios
expected for imaging satellites. Images of this quality were obtained in
spite of the fact that Wiener filtering was not performed. By adding a post
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processing step of Wiener filtering the images, improved image quality may
be expected.
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4
UNIQUENESS OF IMAGES CONSTRUCTED FROM FOURIER MODULUS

It is well known that for the one-dimensional case the Fourier modulus
is usually ambiguous [11]. That is, there may be many objects that have the
same Fourier modulus. Going further, there may even be many real, nonnega-
tive objects that have the same Fourier modulus. One therefore might queS-
tion why one should even attempt to construct an image from Fourier modulus
data if one could get many different solutions. Fortunately the one-
dimensional analysis does not carry over into two dimensions, and, as will
be shown later, the solution almost always is unique for the two-dimensional
case. In Section 4.1 the previously known theory is briefly reviewed and
new experimental construction results are shown in Section 4.2 for a variety
of objects.

4.1 UNTOUENESS THEORY

We first consider the one-dimensional case, although the problem in which
we are most interested is two-dimensional. Switching to continuous vari-
ables, the Fourier transform relationship, of which Eq. (1) is a discrete
form, is

F(u) = /:(x)e"'z"“" dx (12)

——— e -

If f(x) is of finite extent, that is, if it is zero outside a finite in-
terval [a, b], then the function F(z) is an entire function (analytic every-
where) of exponential type. The variable z is a complex variable of which u
is the real part. Such functions are completely specified by their complex
zeroes z;, 1 = 1, 2, ..., satisfying F(zi) = 0. In particular, from the
Hadamard factorization theorem we have [12]

-]

n o - z/zi) (13)
j=l

F(z) = A28

where A is a constant and q is the order of the zero at z = Q.
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Th  -eason that the one-dimensional case is usually not unique is as
follow.. In theory, since F(z) is analytic, given any finite segment of
F(z), F(z) can be determined everywhere by analytic continuation. Similarly,

)|2 on the

since Ffz) is analytic, so is F(z)F(z), which is equal to |F(u
real line., (The overbar indicates complex conjugation.) Therefore, given
IF(u)I2 it is theoretically possible to determine the complex zeroes of
F(z)F(Z). If the complex zeroes of F(z) were known, then Eq. (13) could be
used to determine F(z) and in particular F(u). However, for each zero Z
of F(z), F(z)F(z) = 0O both at z; and at 'Ei. Therefore for each non-
real-valued complex zero of F(z) there is a two-fold ambiguity of the solu-
! different
solutions, and in general m is infinite. In general it is not known, how-

tion. If there are m complex zeroes then there would be 2™

ever, what number of solutions are nonnegative.

Although the uniqueness problem is very severe in the one-dimensional
case, it fortunately do2s not appear to be a probiem in the two-dimensional
case. Bruck and Sodir [13] analyzed the case of an object made up of an ar-
ray of delta-functions. The Fourier transform then reduces to a discrete
sum, and the discrete sum can be shown to be equivalent to a polynomial of
complex variables, The zeroes (roots) of the polynomial are associated with
the complex zeroes discussed above. [t can then be shown that the ambiguity
of the solution is determined by the number of factors into which the poly-
nomial can be factored. In the one-dimensional case a polynomial can always
be expressed as the product of m prime factors, where m is equal to the order
of the polynomial, which is equal to the number of discrete points across
the object. Therefore, for the one-dimensional case there are 2m-1
tions. On the other hand, two-dimensional polynomials are rarely factorable.
Therefore, for the two-dimensional case the solution is usually unique (to
within a 180° rotation and a translation).

solu-

It can be argued that this analysis can be extended to the case of a con-
tinuous, extended object (as opposed to a sampled object) by noting that F(z)
for a continuous object can be closely approximated by a polynomial [14].
Therefore, although further analytical work is required to definitively an-
swer the question of uniquenéss for continuous objects 1in two-dimensions,
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one would expect the solution to be generally unique (except for ves, special

cases) in two dimensions.

Fried [15] has considered the special case for which the Fourier trans-
form is separable in its two orthogonal coordinates, that is, it can be
written as the product of two one-dimensional functions (and 1f the Fourier
transform is separable, then so is the object function). This case can be
shown to have a high degree of non-uniqueness. The high degree of ambiguity
is expected since the separability condition changes the two-dimensional
problem into two one-dimensional problems, and the high dearee of ambiguity
is well known in one dimension, as discussed earlier.

Fried [15] goes one step further and shows how to generate an arbitrary
number of nonnegative (one-dimensional or separable two-dimensional) func-
tions having the same Fourier modulus. He has since found that the functions
generated by his method tend to be smooth

4.2 UNIQUENESS EXPERIMENTS

The uniqueness of the solution was empirically tesied on several differ-
ent objects in order to provide a practical answer to the uniqueness
question.

Digitized photographs of several different satellites were provided to
ERIM by B.L. McGlamery (Visibility Laboratory, U.C. San Diego). Since it
was suspected that the uniqueness property may depend on the complexity of
the object, we computed several versions of each satellite, each version at
a different resolution (at a different magnification). The lower resolution
versions provided examples of less complicated objects.

The method of generating lower resolution versions was to resample the
fine resolution images on a coarser grid. Points on the coarser grid that
fell between the points on the finer grid were given values according to a
two-dimensional separable triangular filter operating on the four nearest
neighbor points on the finer grid. This type of resampling does not give an
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deragnifization - - it has a tendency to overemphasize some features

L. abject md ntey otrers. However, for the purpose of these experiments
ar ccurate demagnifisation was not required; it was only desired that a
smailer, less complicated object be synthesized.

The objects used are listed in Table 1. In order to avoid the possi-
bility of aliasing, the objects were initially all scaled to fit within a
square of size 64 by 64 pixels, which was imbedded in an array of size 128
by 128. The magnification factors required for the initial scaling are
listed in Table 1. If a telescope of diameter 1.6 meters and a wavelenath
of 550 nm were used, and the image sample size were equivalent to (a/2D) =
550 nm/3.2 m = 1,719 «x 10'7 radians = 0.03545 are-sec per pixel, then the
apparent distances corresponding to the objects of size 64 pixels are given
by (image scale in meters per pixel) (20/x), which are listed in tne last
column of Table 1. In addition to objects of size 64 pixels, objects of size
32, 16, 8 and 4 pixels were ger~arated using the resampling method described
above. That is, a total of 40 test objects (8 objects at 5 magnifications
each) were used in the experiments. The smaller, lower-resolution objects
can be thought of as being at proportionally greater distances from the tele-
scope. Because of the way that the resampling was done, the objects "of size
4 pixels" are in fact only 3 pixels across; in addition, except for the Film
No. 508 and 608 cases, one pixel dominates the others; consequently, the ob-
jects of size 4 pixels tend to look very much like single point scatterers.

The Fourier modulus data for each test ohject was generated by Fourier
transforming the test object, then multiplying the complex Fourier transform
by W, the weighting function due to a circular telescope aperture, and then
tak ing the modulus (or magnitude). The weighting function is given by the
autocorrelation of a circular aperture of diameter 62 pixels in the Fourier
domain., For this set of experiments the effects of diffraction due to the
telescope aperture were included, but the Fourier modulus data was otherwise
free of error. For comparison with the construction results, the inverse
Fourier transform of the weighted complex Fourier transform was computed.
The resulting image, which is referred to as the reference object, is equiv-
alent to a diffraction-limited image of the object.




The same set of 340 iterations as discussed in Section 2 was us . egh
of the forty test cases. Figures 10 to 17 show the reference obje.. and a
corresponding constructed image for all forty cases. Images that came out
inverted were re-inverted in order to take on the same orientation as the
reference object.

A problem that occurred was that the algorithm usually did not converge
completely to a solution: it usually stagnated at a local minimum at which
it produced an image of good quality bhut with a set of stripes superimposed
across the image. When the algorithm stagnated at such a local minimum, it
was not possible to determine with certainty whether the solution it was con-
verging toward was exactly the same as the reference object. As discussec
in Section 3, the stagnation at an output image having stripes is most likely
a problem of algorithm stagnation at a local minimum of E0 and does not
represent a uniqueness problem. In almost all of the different constructed
images shown in Figures 10-17, the primary difference between the constructed
image and the reference object is the presence of the stripes. Therefore we
conclude from those cases that if the algorithm were improved in such a way
3s to avoid stagnation with stripes, then it would probably converge to an
output image identical to the reference object. That is, these results imply
that for most cases the solution is unique.

The stripes are usually more difficult to see when reproduced than they
are when the image is viewed on a T.V. monitor, which has greater dynamic
range than a paper print of the image. Usually there is a single set of
stripes across the image. In any given image the stripes have an average
period and angular orientation, but across the image the stripes vary signif-
icantly about those averages. In some cases, more than one set of stripes
appear in a given image; for example, in Fiaure 12(B) there are strong (high
contrast) stripes both horizontally and at about a 45 degree angle. The
stripes extend over the entire field-of-view but have maximum contrast over
the extent of the object. The fact that the stripes extend beyond the known
extent of the object (which is half the diameter of the autocorrelation) will
probably enable us, some time in the future, to develop an algorithm to de-
tect them and eliminate them.
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K - ¢ lsts the rms error E, as defined by Eq. 5), for the forty
¢oiste Lted smages.  This is a measure of how well the constructed image
agrees with the simultaneous constraints of nonneqativity and having a
Fourier modulus equal to the Fourier modulus of the reference object; that
is, it is a measure of how close it is to a solution. For a given size of
object, constructed images with larger values of Eo are known to be
farther from a solution. Therefore, for example, the 32-pixel size and
16-pixel size constructed images of Film No. 302 shown in Figures 12(D) and
(F) should probably be ignored because they are much farther from solutions

than are the constructed images for the other objects (and so they are not
necessarily an indication of non-uniqueness).

If the cases that did not converge very close to a solution (having large
, values of Eo) are ignored, and if perturbations due to stripes are ig-
1 nored, then most, but not all, of the image construction results shown in
Figures 10-17 seem to indicate that the solutions are unique. The most dis-
turbing departure from uniqueness came in the case of the 64-pixel size of
Film No. 401, FLTSATCOM. The constructed image has the same overall shape
as the reference object but differs from it in its details, despite the fact
that for this object an additional 380 iterations were performed. Subsequent }

7 runs of the algorithm using different starting inputs encountered similar
y problems for this object. From Figure 14(A) one can see that for this par-
;] ticular object its bright central part is nearly circularly symmetric. Since
a circularly symmetric object can be described as a function of a single
variable, its radial coordinate, one could hypothesize that such objects
would have the same high dearee of ambiguity as one-dimensional objects, but
this is not known, Therefore, although most objects of interest are probably
unique, there appear to be special classes of objects for which the solution
is not unique. From the results shown in Figures 10-17 it appears that the
non-unique (ambiauous) cases are the exceptions rather than the rule.
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TABLE 1
OBJECTS FOR UNIQUENESS STUDY

Unscaled Magnification  Apparent-Distance

Film Pixel for 64-Pixel for 64-Pixel
No. Object Description Size Width Width (km)
204 P72-2 Sensor Testbed (A) 0.0174m 0.267 379
205 P72-2 Sensor Testbed (B) 0.0174m 0.7267 379
302 777 Communications Sat(A) 0.0174m 0.267 379
314 777 Communications Sat(B) 0.0174m 0.279 363
401 FLTSATCOM 0.0581m 0.250 1352
509 LST (A) 0.087 Im 0.356 1423
508 LST (B) 0.0871m 0.291 1741
608 SURVSATCOM 0.116m 0.356 1896
TABLE 2
RMS ERROR E, OF CONSTRUCTION RESULTS FOR
UNIQUENESS STUDY
Object Object Size (Pixels)
(Film No.) 64 32 16 8 4
204 0.0327 0.0234 0.00914 0.00051 0.00048
205 0.0262 0.00421 0.00074 0.00058 0.00049
302 0.0189 0.0553 0.0154 0.00071 0.00053
314 0.0156 0.00268 0.00813 0.00164 0.00055
401 0.00240 0.00101 0.00061 0.00050 0.00048
509 0.00782 0.00660 0.00072 0.00053 0.00048
508 0.00296 0.00179 © 0.00197 0.00071 0.00048
608 0.00368 0.00169 0.00073 0.00100 0.00054
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11. Reference objects and constructed images for Fiim No. 205,
P72-2(B). Reference object and constructed image for (A, B) 64-pixel
{(C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel
width, and (I, J) 4-pixel width.

4?




Figure 12, Reference objects and const-~uctad imeges for Film No. 302,

777(A). Reference object and constructed image for (A, 8) 64-pixel

width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel
width, and (I, J) 4-pixel width.
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Figure 13.

width, (C,

777(8). Re
D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel

Reference objects and constructed images for Film No. 314,
:ference object and constructed image for (A, B) 64-pixel

width, and (I, J) 4-pixel width.
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Figure 14. Reference objects and canructed tedage
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Figure 15. Reference objects and constructedimages for Film No. 509,

LST(A). Reference object and constructed image for (A, B) 64-pixel

width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel
width,and (I, J) 4-pixel width,
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Figure 16. Reference objects and constructed images for Film No. 508,

LST(B). Reference object and constructed image tor (A, B) 64-pixel

width, (C, D) 32-pixel width, (E, F) 16-pixel width, (G, H) 8-pixel
width,and (I, J) 4-pixel width.
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Figure 17,
SURVSATCOM.
width, (C, D} 32-pixel width, (E,
width,and (I,

Reference objects and
Peference object and

constructed images for Film No. 608,
constructed image for (A, B) 64-pixel
F) 16-pixel width, (G, H) 8-pixel

J) 4-pixel width.
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5
ALGORITHM CONVERGENCE

Several different aspects of the convergence of the algorithm are of in-
terest. A few variations of the algorithm were compared for convergence
speed. Investigations were made into the convergence speed as a function of
object complexity and of Fourier modulus signal-to-noise ratio. Attempts
were made to cause the solution to move away from a local minimum character-
ized by the stripes discussed in Sections 3 and 4.

5.1 COMPARISON OF DIFFERFNT ALGORITHMS

Four different versions of the algorithm were compared. A1l four ver-
sions use the same first three steps described in Section 2. They differ in
the method in which the new input O+ is chosen. The first method, which
we call the error-reduction approach, is given by Eq. (2) in Section 2:

glz’mn’ (m; n)¢ Y

I+1,mn = (14)

0, (my n) e v

where % .mn and g'k mn e the input and output, respectively, at the 1
1] L

kth iteration and y is the set of points at which g'k mn violates the

object-domain constraints. The principal object-domain constraint is that

Lor TR Sy

g' be nonnegative everywhere; an auxiliary constraint is that the extent
(diameter) of the object not exceed the known diameter which is half the
diameter of the given autocorrelation. For the error-reduction approach the (
new input is equal to the current output modified to satisfy the object- J
domain constraints. Satisfying the object domain constraints consists of
setting the output to zero wherever it violates the constraints. In Appendix
‘ A is a proof that the error reduction approach converges in the sense that
i the mean squared error, as defined in Eqs. (4) and (5) in Section 2, is mono-

tonically decreasing with each successive iteration.

In addition to the error-reduction approach, three different versions of
the more general input-output approach were investigated. The basic idea
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behind the input-output approach is that the first three operations of the
algorithm — Fourier transformation, satisfaction of Fourier-domain con-
straints; and inverse Fourier transformation -- can be viewed as a nonlinear
system having an input g and an output g'. By appropriate change§ in the
input one attempts to drive the output to satisfy the object-domain con-

straints. Since the output by definition satisfies the Fourier-domain con-
straints, it is a solution to our problem if it can be made to satisfy the

ob ject-domain constraints.

For a problem very similar to the one at hand, it has been shown that
for small changes in the input, the expected value of the corresponding
change in the output is a constant, a, times the change in the input [4].
Since additional nonlinear terms also appear in the output, the change in
the output due to a particular change in the input cannot be predicted ex-

A S

actly. Nevertheless, by appropriate changes in the input, the output can be
pushed in the general direction that is desired. If a change 49, is de-
sired in the output, then a logical choice for a change in the input to
achieve that change in the output would be BAG s where 8 is a constant

i ideally equal to a_]. For the problem at hand, the desired change in the

output is !
0, (ma n)¢ Y
‘l 6g., = (15)
l —gf;'ln’ (ms n) € Y
that is, where the constraints are satisfied one does not require a change
of the output, but where the constraints are violated, the desired change in
the output is one that drives it to a value of zero {(and therefore the de-

sired change is the negative of the output at those points). Therefore a
logical choice for the next input is g + sag, that is,

: G () ¢

(16)

J
: I+1,mn =
| 9% ,mn ~ Bg'k,mn’(m’n) €y

We will refer to the use of Eq. (16) as the basic input-output approach.
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An interesting property of the nonlinear system (consisting of the three
steps mentioned above) is that if an output g' is used as an input, then its
output will be itself. Since the Fourier transform of g' already satisfies
the Fourier-domain constraints, g' is unaffected as it goes through the sys-
tem. Therefore, irrespective of what input actually resulted in the output
g', the output g' can be considered to have resulted from itself as an input.
From this point of view, another loaical choice of the next input is

gé'mn: (mon) ¢I Y

I%+1,mn = (17)

I, mn ~ B9k, mn> (MN) e v

We will refer to the use of Eq. (17) as the output-output approach.

Note that if 8 = 1 in Eq. (17), then the output-output approach reduces
to the error-reduction approach of Eq. (14). Since the optimum value of 8
is usually not unity, the error-reduction approach can be looked on as a sub-
optimal version of a more general approach,

A fourth method of choosing the next input which we investigated is a
combination of the upper line of Fa. (17) with the lower line of Fag. (16):

g‘z,mns (mon)¢ Y

I+1,mn = (18)

gk,mn - Bglk’mn) (msn) €Y

We will refer to the use of Eq. (18) as the hybrid input-output approach.

The hybrid input-output approach is an attempt to avoid a stagnation problem

that tends to occur with the output-output approach. The output-output ap-
proach often works itself into a situation in which the output on successive
iterations does not change, despite bheing far from a solution. For the hy-

brid input-output approach, on the other hand, if at a given pixel (m, n)
the output remains negative for more than one iteration, then the corre-
sponding point in the input continues to grow larger and larger until even-
tually that output point must go nonnegative.




The four approaches discussed above were compared by using them on the
same Fourier modulus data and with the same starting input. For each ap-
proach several different values of the parameter g were tried. The principal
problem with the error-reduction approach is that it tends to stagnate after
& few iterations. The starting point for the iterations was chosen to be a
partially constructed image of the Film No. 509, LST(A) object (at a 64-pixel
size), on which the error-reduction approach was making very slow progress.
Ten iterations of each of the four approaches followed by ten iterations of
the error-reduction approach (that is, a total of twenty iterations) were
performed using that same starting input. The reason that each approach was
followed by ten iterations of the errorreduction approach is that in some
cases definite prugress is being made with an input-output approach even
though the rms error gets worse with each iteration. The relationship be-
tween the rms error and the visual image quality is not fully understood,
although of course one would expect a high dearee of correlation between the
two. For the approaches for which the rms error does not seem to be a good
indication of the image quality, we found that the rms error could be made
to be a good measure of the image quality by performing a few (say ten) iter-
ations of the error-reduction approach on the results of the input-output
approach,

Figure 18 shows a plot of the rms error after the twenty iterations for
each of the input-output approaches as a function of the parameter g. Recall
that tne output-output approach with 8 = 1.0 is eguivalent to the error
reduction approach. Figure 18 shows that the hybrid input-output approach
is superior to the others in this case, and that the optimal value of 8 is
about unity.

The manner in which the diameter constraint (limiting the diameter of
the constructed image to half the diameter of the autocorrelation) was im-
posed was found to have a sianificant impact on the convergence speed. At
the beginning of this program the strategy for applying the diameter con-
straint was to impose it very loosely (i.e., allow the image to have a larger
diameter) for the early iterations, then tighten up the diameter for later
iterations after the image distribution became better confined to an area of
the desired size. This strategy helped to avoid the previously encountered
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Figure 18. Rms error, Eo, after sequence of 20 iterations versus

‘ algorithm parameter g for the basic input-output approach (a), the
output-output approach (e) and the hybrid input-output approach (x).
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problem of having the diameter constraint inadvertently chopping off an edge
of the desired image. It was discovered that reversing the sequence resulted
in an increase in convergence speed: apply a very tight diameter constraint
for the early iterations, and loosen that constraint as the iterations pro-
gress. This strateqgy helps to move energy from the regions clearly outside
the object's support to within the objects support during the early itera-

tions. This results in a convergence speed-up by as much as a factor of two.

! 5.2 DATA DEPENDENCY OF CONVERGENCE

The convergence speed of the algorithm depends both on the complexity of
the object and upon the signal-to-noise ratio of the Fourier modulus data.
The most convenient scale by which convergence is measured is the rms error
E0 or EF, both of which are consistently meaningful only after a few
iterations of the error reduction approach are performed.

The data generated during the studies of the noise properties of the con-
structed images show that the number of iterations required was the least
for the data of the lowest sianal-to-noise ratio. For the data having the

very worst signal-to-noise ratio (photoelectron scale factor = 6), only a

few iterations were required for convergence. That is to say, after just a
few iterations no further progress could be made although Eo was still
large, and the solution had gone as far as it usefully could. For the higher
signal-to-noise ratio cases, additional iterations further reduced the rms

error, so in that sense the convergence time was longer.

The data generated during the studies of the uniqueness of the solution
showed that the objects of lesser complexity (smaller magnification) con-
verged to lower values of rms error Eo after fewer iterations than the
more complex objects. However, the total number of iterations performed be-
fore the algorithm stagnated showed only a weak dependency on object complex-
ity. For the cases of low object complexity stagnation occurred at consid-
erably lower values of Eo than for cases of higher object complexity, but

stagnation tended to occur sooner for cases of low object complexity.
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5.3 THE STRIPES PHFNOMENON

As mentioned in Sections 3 and 4 the algorithm often stagnates at a local
minimum characterized by a pattern of stripes across the image. In most
cases the stripes are barely noticeable and are of low contrast superimposed
on an otherwise excellent constructed image. In some cases the stripes are
of high enough contrast to be objectionable, although they still permit the
object to be recognized. As shown in Section 3, different starting inputs
converge to images having stripes of different angular orientations and
spatial frequencies (periods). There seems to be a tendency for the stripes
to be oriented at the same angle as a prominent feature of the object. The
stripes extend over the entire field-of-view, beyond the known diameter of
the object. The contrast of the stripes tends to be greater over the extent
of the object and less outside the extent of the object. The stripes appear
only when the sianal-to-noise ratio is high,

We believe that the existence of the stripes does not represent a funda-
mental uniqueness problem. When the algorithm stagnates on an output having
stripes, the rms errors Fo and EF are never zero, and so it is known
that it is not exactly a solution, although it is usually close to a solu-
tion. 1f the algorithm happens to find the solution free of stripes, then
the rms error E° is lower than for the case having stripes, providing a
way to distinguish the correct solution from the colution having stripes.
In addition, since a valid solution cannot have a diameter exceeding half
the diameter of the autocorrelation, the fact that the stripes extend beyond
that diameter provides a way to distinguish the correct solution from a so-

lution having stripes.

For the one-dimensional case it is known that if a single pair of complex
zeroes is moved (to locations other than their conjugates) around symmetri-
cally in the Fourier complex plane, then the result in the image plane can
be a function similar to the original but having a sinusoid added over the
interval of its support [127. This particular operation results in a Fourier
transform with a Fourier modulus different from the original Fourier modulus;
therefore the new object created does not cause a problem of uniqueness,
Furthermore, this one-dimensional analysis does not carry over directly into
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two dimensions. Nevertheless, this one-dimensional phenomenon might ulti-
mately be connected in some way with the stripes phenomenon,

An Sttempt was made at moving away from the constructed image having
stripes. After the algorithm converged to an image having stripes and seemed
to stagnate there, random noise was added to the image and then further iter-
ations were performed. It was found that the algorithm quickly converged
back to an image with essentially the same stripes, even when large amounts
of noise had been added. Only by starting with a different initial input
having no stripes present could one converge to an image having a different
set of stripes. Further work will be necessary to develop a method of break-
ing away from stagnation at local minima having stripes.
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b
CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE RESEARCH

The results shown here indicate that construction of images by the iter-
ative method from Fourier modulus data provided by stellar speckle interfer-
ometry should prove to be successful for imaging earth-orbiting satellites.
With the levels of photon noise present in practical situations it should be
nossible to construct images that are diffraction-limited in resolution.
The solution can generally be counted on to be unambiguous (i.e., unique)
except for special classes of objects, for example, objects that can be
described as separable functicns. The image construction algorithm has been
developed to a point were convergence requires about 100 iterations, which
takes less than two minutes on an array processor (Floating Point System
AP-1208) for array sizes 128 by 128.

More particularly, the major results of this research effort are as fol-
lows., The rms error of the constructed images increases in a gradual and
predictable manner as the rms error of the Fourier modulus estimate in-
creases, roughly as the square root of the rms error of the Fourier modulus
estimate. For photon noise levels up to ten times worse than the baseline
case, the quality of the constructed imag2 is good. The most recent theory
of the uniqueness of the solution suggests, and our experimental results ap-
pear to confirm, that the solution is usually unique for two-dimensional ob-
jects, both for ohjects of high complexity (large space-bandwidth product)
and low complexity. These results were obscured, however, by an inability
to converge completely to a solution in many cases. The algorithm has a
tendency to stagnate at a local minimum characterized by a set of stripes
across an otherwise recognizable image of the object. As the signal-to-noise
ratio of the Fourier modulus data decreases, the ambiguity of the solution
increases, but that ambigquity takes the form of noise in the constructed im-
age rather than a complete change in the basic characteristics of the image.
Fewer iterations of the algorithm were needed in the low signal-to-noise
ratio cases, but the images were correspondingly poorer. Images of greater
complexity tended to take a larger number of iterations than images of lower
complexity. The convergence speed® of the algorithm was increased by the
manner in which the diameter constraint was imposed. A comparative study of
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a few different versions of the algorithm showed that, among the approaches
tried, the hybrid input-output approach converges the fastest by a wide

marqin.

The most critical questions have been answered successfully by this re-
search, but important aspects of the problem remain to be studied.

Althouah useful images are obtained in spite of it, the stripes phenom-
enon remains as a puzzling hindrance to the complete convergence of the al-
gorithm to a solution. Theoretical analysis is needed to understand why the
stripes occur and how they might be deali with. Further effort should be
expended to determine ways of automatically identifying the presence of the
stripes and having the algorithm reject them. Once this problem is solved,
the uniqueness experiments should be repeated in order to determine with
greater certainty whether the solution is usually unique.

A potential source of error not addressed in this research project is
the estimation of the MTF of the speckle interferometry process. Computer
simulations should be performed in order to determine the effect of errors
in the MTF estimate on the constructed image and whether they affect the
uniqueness of the solution. 1In addition, there may be situations for which
it is not always convenient or practical to obtain an estimate of the speckle
MTF from a reference star. Therefore, alternative methods of estimating the
speckle MTF should be studied and compared, including model fitting, the
Worden subtract method, and the clipping method [10].

Further development of the algorithm itself is needed to make it converge
in real time. More variations of the algorithm should be compared over a
wider range of circumstances. In addition, major modifications of the algo-
rithm may be called for. A particularly promising line of attack would be
to apply the discipline of control theory to the input-output system concept.

Image construction experiments should be carried out on actual telescope
data gathered on orbiting satellites to demonstrate its usefulness in solving

the space object identification problem and to discover what additional prob- {
lems need to be overcome when handling data from a real sensor.

Comparison of the image construction results from noisy Fourier modulus
data should be made both with (computer simulated) images constructed by the

58




Knox~Thompson method "167 and with images from a compensated imaging system.
As the reflectivity of the object decreases, there is some point beyond which
1t 15 no longer possible to accurately sense the wavefront deformation, and
the compensated imaging system would no longer adequately correct for atmo-
spheric turbulence. However, under the same severely photon-limited case,
speckle interferometry can continue to function since it integrates over many
frames and can ultimately have a higher signal-to-noise ratio than the com- 3
pensated imaging system which must correct for turbulence based on measure- ‘

ments made over an interval of time of only a few milliseconds. Computer i
simulations should be carried out on the Knox-Thompson method using the same
simulated data that was generated for the noise properties study described
in this report. Then using existing computer-simulated results for the
Fourier modulus image construction method and for compensated imaging, a com-
parison of the three methods should be made for various levels of photon
noise. It may also be desirable to vary the turbulence parameter o To
make the comparison complete, the same type of Wiener filtering should be
performed on the Knox-Thompson and Fourier modulus image construction results

as is done on the images from the compensated imaging system.

Methods of combining the image construction from speckle interferometry
Fourier modulus data with compensated imaging systems should be explored.
It may be possible to have a compensated imaqging system utilize the iterative
method for those instances where low light levels hinder the ability to track
the wavefront deformation caused by the turbulent atmosphere. Experiments
both with simulated compensated images and eventually with real data from a
compensated imagina system would be needed. Most simply, the iterative .
method can be thought of as another post-processing step to obtain improved {
imagery from the compensated imaging system., When compensated images from
the system being developed at AMOS on Maui become available, if they are not
diffraction-limited they should be additionally post-processed using the
iterative algorithm,

LA SR oL

1
-E For the case of tumbling or rotating objects, methods will have to be
developed to take these effects into consideration, For general time-varying

objects it may be possible to "lock on" to the image: after acquiring an im-
age at a given time, as the object changes and new data is collected, only a
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few iterations of the algorithm may be required to converge on the new image
if information about the previous image is utilized.

Methods of increasina the signal-to-noise ratio of the data to ensure
good quality constructed images should be developed. One method of ihcreas-
ing the signal-to-noise ratio is to extend the spectral bandwidth of speckle
interferometry. A present limitation on the spectral bandwidth is the wave-

length dependence of the impulse response for a given optical path difference
caused by the atmosphere. It may be possible to create a wavelength-
independent impulse response using an optical system composed of wavelength-
sensitive optics, such as holographic optical elements.

Finally, the iterative method could be applied to a number of other prob-
lems of interest to the Air Force. It can be applied to any reconstruction
problem for which only partial information is available about an object,
wavefront, or signal and only partial information is available about its
Fourier transform. Such applications include, in addition to Fourier modulus

image construction, wavefront sensing, spectral extrapolation, and X-ray
crystallography phase retrieval. The iterative method can also be applied
to synthesis problems for which one wants both a function and its Fourier

transform to satisfy a given set of constraints or have certain desirable H

properties. Such applications include spectrum shaping and the design of
lens pupil functions, antenna array phases, radar signals, and digital
filters.
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APPENDIX A
CONVERGENCE PROOF

In this appendix it is shown that for the error-reduction approach the
error monotonically decreases at each iteration.
h

The kt iteration beqgins with I ne @ estimate of the object that
satisfies the object-domain constraints, First 9% .mn is Fourier trans-
formed, resulting in G |exp(i¢ ). Then in the Fourier
doma ) : K,Pq k,pq _
om?1n, Gk,pq is replaced by G k,pq = Iqu | exp(1dk,pq). The unnor-
malized mean-squared error is defined in the Fourier domain as

koog = |8

? 1 2
fri =7 2 (Bopal = IFoal) (A1)
pq

where p,q =« 0, 1, ..., N-1, which can be expressed as

2 1 2
B = 7 2 IM,pal (A2)
P9

=

i where

“.pa = %,pq = Bk,pa = ( Fpgl =18k pq ) exP(18 pq) (A3)

Forming the new Fourier transform G'k and inverse Fourier transforming

results in

PO

s &

1 ’] ] E
9 ,mn 'g' [Gk.pq] = %,m " "k,mn (A4)

-1
where n, o ".7 [Nk,pq]‘
The new estimate of the object is formed by setting g'k m equal to
]
zero wherever it violates the constraints:

gi'mn’ (myn) ¢ Y

I+1,mn = (AS)

o, (m,n) €Yy




Gabi

Let 9k+l,mn be expressed in terms of gk,mn as follows

h+1,mn = gl;,mn * dk,mn = % ,mn * M ,mn * dk,mn (A6)
where
dk,mn = 9+1,mn ~ qI'<,mn = 9+1,mn ~ %,mn ~ "k,mn (A7)
The unnormalized mean squared error in the object domain is defined as
2 , 2 : 2
Eok = 2 (9,m)" = 25 (4 mn) (A8)
MNey m
And by applying Parseval's theorem, Eq. (A2) becomes
2 2
Eek =20 (N o) (A9)
mn
In the fo]lozinq we g;]] show that l dk,mn | < | "k,mn | for all (m,n),
proving that Ex < ey~ (1) For (m,n) where 9 mn satisfies
the constraints [i.e., (m,n) v), dk,mn = 0, and so Idk,mnl < |nk,mnl

(2) For (m,n) where q'k,mn is neqative, Ie+1,mn = 0 and, from Eq. (A7)

d -n

k,on =~ Ik,mn = “Ik,mn ~ "k,mn

Since ! is neqgative, d is nonnegative. Furthermore, since
K,mn ¢

k ,mn
gk,mn is nonneqgative we have

de,m < 9% ,mn ¥ %,mn =~ "k,mn

and so |dk S L (3) For (m,n) where the object is known to be
;] v
zero (for the case in which the object's diameter is known and that con-

straint is imposed), gk+],mn = % = 0, also leaving dk,mn = -
M ni @4 50 | | < |n po]| . Therefore, since |d o] <

I"k mn | for all (m,n), then from Eqs. (A8) and (A9) we have

2 2
\ Eox < Eop (A10)
\.
Four ier transforming Eq. (A7),

\‘\ D ,pa = Bk+1,pq ~ Bk,pq (A1)
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and so

-

2 2 . 2 .
1%,pal = 18k+1,pal * 1%,pal = 2 Rel6y pq Byaq g (A12)

where an overbar denotes complex conjugation and Re the real part. From Eq.
(A3),

Ne+1,pg = Bk+1,pq ~ ke ,pg (A13)

and so
N TS 2+ 16 12 - 2 RelG; g 1 (A1)
IMes1,pal = 18k+1,pal ¥ 18k+1,pq k+1,pq °k+1,pq

Taking the difference between Eq. (A12) and Eq. (A14) and using the fact that

lle,pql ’|G'k+1,pq| - ,qu|, we have
2 2 . .
IDk.pql - lNk+],pql =2 Re[Gk+],pq Gk+1,pq] -2 Re[Gk,pq Gk+1,pq]
= 2|Fpql+Byay,pql [1 - cos 0 ] >0 (A15)

' —
where o(u) = arg(G K.Pq Gk+1,pq]' And therefore for all (p,a),

This result can also be easily seen from the geometry of Figure Al. The re-
sult is the same irrespective of whether | Gk+1,pq| is greater than or less
than |qu|. Therefore, by using Parseval's theorem on Eq. (A8) and usinag
Eq. (A2), we have

2 2
Er k1 < Eok (A17)

Combining this with Eq. (A10) gives the desired result

2 2 .2
Er ko1 < Bok < Epy (A18)

That is, the unnormalized mean-squared error must decrease, or at least not
increase, with each iteration of the error-reduction approach. The quanti-
ties usually considered are the normalized mean-squared errors, Eqs. (4) and
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Figure Al. Fourier domain quantities for a given value of (p, q),
showing that ‘Nk+l,pql < IDk,pql‘

|
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(5. Since these are simply moportional to the unnormalized mean-squared
errors, £q. (A18) also nolds for the normalized mean-squared errors.

Complete stagnation of the error reduction approach could occur if
= - N for all (m,n), in which case from Eq. (A7) one gets

d
k ,mn
for all (m,n). Another condition of stagnation is for

k ,mn
%+1,mn = %, mn

opq = 0 for all (p,q) in Eq. (A15),
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